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Abstract

The method of fundamental solutions (MFS) has been proved to be an accurate and efficient meshless numerical method

to solve acoustic eigenproblems. Traditionally, the technique of the singular value decomposition (SVD) is employed to

obtain the corresponding contours of acoustical modes after the eigenvalues are solved. However, it is found that the mode

shapes are sensitive to the source locations of the MFS. In this paper, we try to derive a robust meshless numerical scheme

to obtain the contours of acoustical modes based on the linear least squares method of fundamental solutions (LSMFS) by

specifying an additional normalized dual boundary condition. The failure for determining the mode shapes by specifying a

normalized data at boundary locations near or on the nodes are examined. Moreover, it is demonstrated that the mode

shapes of degenerate eigenmodes can be distinguished by specifying the boundary data at different boundary points.

Furthermore, a normalization procedure is introduced for degenerate eigenmodes. Three numerical experiments with

regular and irregular boundaries are carried out to validate the proposed method. Mode shapes obtained by the linear

LSMFS are in good agreement with the analytical solutions and also the results obtained by the finite element method. In

addition, the robustness and accuracy of the eigenvalues obtained with respect to different locations of source points by the

linear LSMFS in conjunction with direct determinant search method are also revisited.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, researchers have paid attention to the meshless numerical methods without employing
the concept of element. The initial idea of meshless methods dated back to the smoothed particle
hydrodynamics (SPH) method for modeling astrophysical phenomena [1]. The method of fundamental
solutions (MFS) is another important category of the meshless numerical methods which approximates the
solutions by a linear superposition of the fundamental solutions with sources located outside the
ee front matter r 2009 Elsevier Ltd. All rights reserved.

v.2009.02.032

ing author. Tel./fax: +886 2 2362 6114.

ess: dlyoung@ntu.edu.tw (D.L. Young).

artment of Information Technology, Toko University, Chia-Yi County 61363, Taiwan.

artment of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.02.032
mailto:dlyoung@ntu.edu.tw


ARTICLE IN PRESS
C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–1110 1087
computational domain to avoid the singularity [2–11]. Comparing to conventional numerical methods, such as
the boundary element method (BEM) and the finite element method (FEM), the MFS is a meshless, integral-
free and non-singular numerical method. The MFS was first proposed by Kupradze and Aleksidze in 1964 [2].
Later Mathon and Johnston [3] and Bogomolny [4] provided mathematical fundamentals for the MFS. Then
the MFS was successfully applied to the potential flow problems [5], the biharmonic equation [6], the Poisson
equation [7], the Stokes flow problems [8,9], and the diffusion equations [10,11]. In this paper,
we will concentrate on the MFS for acoustic problems, which are governed by the Helmholtz equation.
The detailed descriptions and comparisons of MFS with other numerical methods can be found in
Refs. [8,12–15].

Kondapalli et al. [16] were among the first to apply the MFS for the Helmholtz equation in the analysis of
acoustic scattering in fluids and solids. On the other hand, Karageorghis [17] applied the MFS to obtain
eigenvalues of the Helmholtz equation in 2D simply-connected domains, and Chen et al. [18] solved
eigenvalues in 2D multiply-connected domains. Tsai et al. [19] recently summarized the MFS applications
for eigenvalues in 2D and 3D domains with and without interior holes. Recently Reutskiy [20] proposed a
new algorithm to determine the eigenvalues in the MFS which is totally different from the singular
value decomposition (SVD) technique and direct determinant search method. The capability of determination
of the eigenvalues by the MFS is unquestionable. Alves and Valtchev [21] compared the MFS with the
plane waves method and concluded that the plane waves method can be seen as an asymptotic case of the
MFS. Instead of using fundamental solution in the MFS, the non-dimensional dynamic influence function
method proposed by Kang et al. [22–24] adopted only the imaginary part of the fundamental solution. Although
adoption of the imaginary part of the fundamental solution can form a boundary-type and singularity-free method,
the non-dimensional dynamic influence function method can be treated as a special case of the imaginary-part dual
BEM [25].

In those previous mentioned works [17–19], the MFS in conjunction with the direct determinant search
method was applied to obtain the eigenvalues. Furthermore, it was found that the eigenvalues obtained
by the MFS are highly accurate with very few nodes and insensitive to the locations of sources. However, the
MFS has not yet been applied to obtain the mode shapes of acoustical eigenmodes to the best knowledge of the
authors.

The SVD has been maturely applied to obtain the contours of acoustical modes after the eigenvalues are
solved by applying the boundary integral equation method (BIEM) [26,27]. However, it is found that the ill-
conditionings of the MFS [28] and the singularities of eigenmodes interacted and made the mode shapes
sensitive with respect to the locations of source points when the MFS associated with SVD was utilized. On the
other hand, Chen et al. [29] applied the dual BEM to obtain the mode shapes of a square cavity by specifying an
additional normalized dual boundary condition. It results in an over determined system of linear equations with
proper conditioning when the prescribed idea is applied to the MFS and thus the linear least squares method of
fundamental solutions (LSMFS) [30] must be applied. Furthermore, it is demonstrated in our numerical
experiments that the degenerate modes can be distinguished by specifying the boundary data at different
boundary points. Besides, the phenomena are examined when the normalized data at boundary locations near
or on the nodes. For degenerate eigenmodes, a normalization procedure which is also based on the linear
LSMFS is derived. Three numerical experiments with and without degenerate acoustic modes for simple and
complex geometries are carried out, in which both Dirichlet and Neumann boundary conditions are considered.
In the following sections, we will address consequently the linear LSMFS, numerical results and conclusions.
2. Linear LSMFS

For acoustical problems, the governing equation is the Helmholtz equation with boundary conditions:

ðr2 þ k2
ÞuðxÞ ¼ 0; x 2 O

uðxÞ ¼ 0; x 2 GD

quðxÞ

qn
¼ 0; x 2 GN

8>>><
>>>:

(1)



ARTICLE IN PRESS
C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–11101088
where x are the spatial coordinates, r2 is the Laplacian, k is the wavenumber, O is the domain of
interest, G ¼ GD þ GN is the boundary of O and q=qn is the directional derivative with respect to the
outward normal vector ~n (Fig. 1(a)). The fundamental solution of the Helmholtz equation, Eq. (1), is
defined by

�ðr2 þ k2
ÞGkðx; sÞ ¼ dðx; sÞ (2)

where s are the coordinates of source points. Then, the 2D fundamental solution can be obtained [17–19]:

Gkðx; sÞ ¼
�i

4
H
ð2Þ
0 ðkjx� sjÞ (3)
si

xi

xc

Ω

ΓN

ΓD

n
→

si = xi + b × (xi − xc)

Fig. 1. Schematic diagram of the distribution of the source and boundary field points.
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Table 1

The four lowest eigenvalues for different nodes (Example 1, b ¼ 0.8).

Analytic solution N ¼ 36 N ¼ 42 N ¼ 48 N ¼ 54 N ¼ 60

Mode 1 3.7241918 3.724197 3.724192 3.724192 3.724192 3.724192

Mode 2 5.0862171 5.086209 5.086217 5.086217 5.086217 5.086217

Mode 3 6.5938166 6.593820 6.593817 6.593817 6.593817 6.593817

Mode 4 6.7727103 6.772700 6.772710 6.772710 6.772710 6.772710

Table 2

The four lowest eigenvalues for different locations of source points (Example 1, N ¼ 54).

Analytic solution b ¼ 0.00001 b ¼ 0.2 b ¼ 0.5 b ¼ 0.8 b ¼ 2.0

Mode 1 3.7241918 3.724250 3.724190 3.724192 3.724192 3.724192

Mode 2 5.0862171 5.086230 5.086219 5.086217 5.086217 5.086217

Mode 3 6.5938166 6.593800 6.593819 6.593817 6.593817 6.593817

Mode 4 6.7727103 6.772700 6.772706 6.772710 6.772710 6.772710

Table 3

The four lowest eigenvalues for different nodes (Example 1, by FEM).

Analytic solution N ¼ 800 N ¼ 1800 N ¼ 3200 N ¼ 5000 N ¼ 7200

Mode 1 3.724192 3.73076 3.72711 3.72583 3.72524 3.72492

Mode 2 5.086217 5.10188 5.09318 5.09014 5.08873 5.08796

Mode 3 6.593817 6.62669 6.60842 6.60203 6.59907 6.59747

Mode 4 6.772710 6.80402 6.78666 6.78057 6.77774 6.77620
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Fig. 2. The result of the direct determinant search method (Example 1).
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where H
ð2Þ
0 ð Þ is the Hankel function of the second kind of order zero. For simplicity, we define the following

notations:

Ukðx; sÞ ¼ Gkðx; sÞ

Lkðx; sÞ ¼
qGkðx; sÞ

qnx

8<
: (4)
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where q=qnx is the directional derivative with respect to the outward normal direction at x 2 G. From the spirit
of the MFS, the solution uðxÞ is assumed to be [17–19]

uðxÞ ¼
XN

j¼1

ajUkðx; sjÞ (5)

where aj is the intensity of a priori distributed source points at sj, and N is the number of source points. Then,
we collocate Eq. (5) by satisfying the boundary condition in Eq. (1) at N boundary field points xi, it results in a
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N�N linear system with the same number of unknowns and equations:

Aðk; x1; s1Þ Aðk;x1; s2Þ � � � � � � Aðk; x1; sN Þ

Aðk; x2; s1Þ Aðk;x2; s2Þ � � � � � � Aðk; x2; sN Þ

..

. ..
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. ..

.

Aðk; xN ; s1Þ Aðk;xN ; s2Þ � � � � � � Aðk;xN ; sN Þ

2
666666664

3
777777775

a1
a2

..

.

..

.

aN

2
666666664

3
777777775
¼

0

0

..

.

..

.

0

2
66666664

3
77777775

(6)
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Fig. 5. Contours of the second eigenmode obtained by the linear LSMFS: (a) b ¼ 0.15; (b) b ¼ 15 (Example 1, N ¼ 52).



ARTICLE IN PRESS
C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–1110 1093
where Aðk;xi; sjÞ ¼ Ukðxi; sjÞ if xi 2 GD and Aðk;xi; sjÞ ¼ Lkðxi; sjÞ if xi 2 GN . In the present work, we
uniformly distribute boundary field points and locate the source points by using the following formula [8,9,31]:

si ¼ xi þ b� ðxi � xcÞ (7)

where xc are the spatial coordinates of the center of the computational domain and b is a spatial parameter as
depicted in Fig. 1(b). Once the parameter b is chosen, the distributions of the source points can be obtained
from the above equation. Eq. (6) is a nonlinear eigenproblem for k that we are searching for eigenvalues
k1ok2ok3o � � � such that Eq. (6) has nontrivial solutions. In the present work, we adopted the direct
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Fig. 7. Contours of the fourth eigenmode obtained by the linear LSMFS: (a) b ¼ 0.15; (b) b ¼ 15 (Example 1, N ¼ 52).

Table 4

The four lowest eigenvalues for different nodes (Example 2, b ¼ 0.8).

Analytic solution N ¼ 28 N ¼ 36 N ¼ 44 N ¼ 52 N ¼ 60

Mode 1 3.1415927 3.141647 3.141586 3.141594 3.141593 3.141593

Mode 2 4.4428829 4.442951 4.442881 4.442881 4.442883 4.442883

Mode 3 6.2831853 6.283186 6.283185 6.283185 6.283185 6.283185

Mode 4 7.0248147 7.024558 7.024865 7.024810 7.024816 7.024815

C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–11101094
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Table 5

The four lowest eigenvalues for different locations of source points (Example 2, N ¼ 52).

Analytic solution b ¼ 0. 15 b ¼ 0.2 b ¼ 0.5 b ¼ 0.8 b ¼ 2.0

Mode 1 3.1415927 3.140530 3.141664 3.141590 3.141593 3.141592

Mode 2 4.4428829 4.442166 4.442893 4.442892 4.442883 4.442883

Mode 3 6.2831853 6.283504 6.283296 6.283185 6.283185 6.283185

Mode 4 7.0248147 7.025631 7.024734 7.024830 7.024816 7.024815

Table 6

The four lowest eigenvalues for different nodes (Example 2, by FEM).

Analytic solution N ¼ 400 N ¼ 900 N ¼ 1600 N ¼ 2500 N ¼ 3600

Mode 1 3.141593 3.14481 3.14303 3.14240 3.14211 3.14195

Mode 2 4.442883 4.45651 4.44896 4.44630 4.44507 4.44440

Mode 3 6.283185 6.30898 6.29466 6.28964 6.28732 6.28605

Mode 4 7.024815 7.06166 7.04128 7.03410 7.03075 7.02895
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Fig. 8. The result of the direct determinant search method (Example 2).
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determinant search method to find the associated eigenvalues [17–19]. After eigenvalues are obtained, we can
solve the corresponding eigenvectors fajgðk1Þ; fajgðk2Þ; fajgðk3Þ; . . . by utilizing the SVD [26,27]. Intuitively, we
are able to find the numerical eigenfunctions, uðxÞðk1Þ; uðxÞðk2Þ; uðxÞðk3Þ; . . .of the original Helmholtz equation,
Eq. (1), by applying Eq. (5). However, it is found that the mode shapes are sensitive with respect to the
locations of sources.

To circumvent this difficulty, an alternative method is thus developed. Assume k ¼ k0 is an eigenvalue of
Eq. (1) and xD 2 G is a specific boundary point. We seek for aj that minimizes the following functional [30]:

SðajÞ ¼
XN

i¼1

PN
j¼1

ajUk0 ðxi; sjÞ if xi 2 GD

PN
j¼1

ajLk0 ðxi; sjÞ if xi 2 GN

8>>>><
>>>>:

����������

����������

2

þ 1�

PN
j¼1

ajLk0 ðxi; sjÞ if xD 2 GD

PN
j¼1

ajUk0 ðxi; sjÞ if xD 2 GN

8>>>><
>>>>:

����������

����������

2

(8)
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The minimization of the functional in Eq. (8) is equivalent to the least squares solution of the following system
of linear equations:

Aðk0;x1; s1Þ Aðk0;x1; s2Þ � � � � � � Aðk0;x1; sN Þ

Aðk0;x2; s1Þ Aðk0;x2; s2Þ � � � � � � Aðk0;x2; sN Þ

..

. ..
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. ..

.

Aðk0;xN ; s1Þ

Bðk0;xD; s1Þ

Aðk0;xN ; s2Þ

Bðk0;xD; s2Þ

� � �

� � �

� � �

� � �

Aðk0;xN ; sN Þ

Bðk0;xD; sN Þ

2
66666666664

3
77777777775

a1
a2

..

.

..

.

aN

2
666666664

3
777777775
¼

0

0

..

.

..

.

0

b1

2
66666666664

3
77777777775

(9)

where Aðk0;xi; sjÞ ¼ Uk0 ðxi; sjÞ if xi 2 GD and Aðk0;xi; sjÞ ¼ Lk0 ðxi; sjÞ if xi 2 GN as well as Bðk0; xD; sjÞ ¼

Lk0 ðx
D; sjÞ if x

D 2 GD and Bðk0;xD; sjÞ ¼ Uk0 ðx
D; sjÞ if x

D 2 GN . b1 is an arbitrary constant other than zero. In
this paper, b1 ¼ 1 is typically selected. Therefore, the mode shape corresponding to k ¼ k0 by specifying a
normalized dual boundary condition at xD can thus be obtained by utilizing Eq. (5) after aj are obtained by
using Eq. (9).

Furthermore, in order to normalize the modal contours for eigenmodes with degeneracy of multiplicity 2,
two dual boundary conditions at xD

1 and xD
2 are thus imposed. Therefore, the linear LSMFS can be presented
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Fig. 10. Contours of the degenerate eigenmode after normalization: (a) b ¼ 0.15; (b) b ¼ 15 (Example 2, modes 1, N ¼ 52).
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by the following matrix form with similar notations:

Aðk0; x1; s1Þ Aðk0; x1; s2Þ � � � � � � Aðk0; x1; sN Þ

Aðk0; x2; s1Þ Aðk0; x2; s2Þ � � � � � � Aðk0; x2; sN Þ

..

. ..
. . .

. . .
. ..

.

..

. ..
. . .

. . .
. ..

.

Aðk0; xN ; s1Þ

Bðk0;xD
1 ; s1Þ

Bðk0;xD
2 ; s1Þ

Aðk0; xN ; s2Þ

Bðk0; xD
1 ; s2Þ

Bðk0; xD
2 ; s2Þ

� � �

� � �

� � �

� � �

� � �

� � �

Aðk0; xN ; sN Þ

Bðk0;xD
1 ; sNÞ

Bðk0;xD
2 ; sNÞ

2
66666666666664

3
77777777777775

a1
a2

..

.

..

.

aN

2
666666664

3
777777775
¼

0

0

..

.

..

.

0

c1

c2

2
6666666666664

3
7777777777775

(10)

where c1 and c2 are two arbitrary constants whose selections will be described in the next section.

3. Numerical results

In order to validate the proposed numerical method, two numerical experiments of Dirichlet problem
without degeneracy and Neumann problems with degenerate modes are first considered. Then the method is
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Fig. 13. Contours of the degenerate eigenmode after normalization: (a) b ¼ 0.15; (b) b ¼ 15 (Example 2, modes 3, N ¼ 52).



ARTICLE IN PRESS

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0
0

0.5

1

0

0.5

1

0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

Fig. 14. Contours of the fourth eigenmode obtained by the linear LSMFS: (a) b ¼ 0.15; (b) b ¼ 15 (Example 2, N ¼ 52).

C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–1110 1101



ARTICLE IN PRESS
C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–11101102
applied to solve a practical problem in complex domain without exact solution. The high accuracy of the
eigenvalues obtained by the linear LSMFS are demonstrated and compared with those obtained by the FEM.
Furthermore, we will show the robustness of obtaining mode shapes by utilizing the linear LSMFS. The
failure in determining the mode shapes by specifying a normalized data at the point near or on the nodes are
examined, and it is found that the degenerate eigenmodes can be distinguished by specifying the boundary
data at different boundary points. The normalized contours of degenerate eigenmodes, obtained by specifying
two dual boundary data, are also sketched for different locations of source points.

3.1. Example 1: Dirichlet problem without degeneracy

In the first example, we consider the following acoustical problem with Dirichlet boundary condition:

ðr2 þ k2
ÞuðxÞ ¼ 0; x 2 ðx; yÞ 0pxp p

2
\ 0pyp1

��� �
uðxÞ ¼ 0; x 2 ðx; yÞ x ¼ 0; p

2
\ 0pyp1

� �
[ y ¼ 0; 1 \ 0pxp p

2

� ���� �
(

(11)

The four lowest eigenvalues obtained by the direct determinant search method applying to the matrix in
Eq. (6) are given in Tables 1 and 2, respectively, for different nodes (N) by fixed locations of source points (b)
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Fig. 15. Contours of the degenerate eigenmode after normalization: (a) b ¼ 0.15; (b) b ¼ 15 (Example 2, modes 4, N ¼ 52).
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and different locations of source points by fixed nodes. From Tables 1 and 2, we can observe rapid convergent
behaviors of eigenvalues as b and N become larger. The numerical eigenvalues are generally accurate up to
10�5 compared with the exact solutions. Table 1 reveals that the larger number of nodes gives the better
accuracy. Also, it is observed that the eigenvalues are not sensitive to the locations of source points, even as b

is close to zero, b ¼ 0.0001. These results are much better than those obtained by the FEM as reported in
Table 3, in which a large number of nodes are required to obtain the same order of accurate eigenvalues. Fig. 2
depicts an example plot of the direct determinant search method. It is thus convinced that the MFS in
conjunction with the direct determinant search method is capable to obtain eigenvalues robustly and
accurately as stated in the literature [17–19].
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Fig. 16. The result of the direct determinant search method (Example 3).

Table 7

The four lowest eigenvalues for different nodes (Example 3, b ¼ 0.8).

N ¼ 24 N ¼ 36 N ¼ 48 N ¼ 60 N ¼ 72

Mode 1 2.07550 2.07539 2.07539 2.07539 2.07539

Mode 2 3.19844 3.19862 3.19864 3.19864 3.19864

Mode 3 4.31387 4.31420 4.31424 4.31424 4.31424

Mode 4 4.38148 4.38134 4.38138 4.38138 4.38138

Table 8

The four lowest eigenvalues for different locations of source points (Example 3, N ¼ 60).

b ¼ 0.01 B ¼ 0.1 b ¼ 0.2 b ¼ 0.5 b ¼ 0.8 b ¼ 2.0

Mode 1 2.04257 2.07549 2.07539 2.07539 2.07539 2.07539

Mode 2 3.14671 3.19888 3.19864 3.19864 3.19864 3.19864

Mode 3 4.24455 4.31460 4.31424 4.31424 4.31424 4.31421

Mode 4 4.31221 4.38161 4.38138 4.38138 4.38138 4.38138
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The numerical results also explain why solving mode shapes is the subject of research focused in this study.
Fig. 3 indicates the mode shapes obtained for different locations of source points by applying the SVD to the
matrix in Eq. (6). The SVD can provide the reasonable mode shapes, when the value of b is taken as 0.1. It is
known that farther sources will give better accuracy but worse conditioning in the application of MFS [3,4,28].
As a result, the ill-conditioning makes the SVD scheme fail to determine the eigenmodes when b is increased
to 0.3.

On the other hand, by specifying a normalized dual boundary data at the different boundary locations, the
mode shapes of acoustical modes obtained by the linear LSMFS (Eq. (9)) for different locations of source
Table 9

The four lowest eigenvalues for different nodes (Example 3, by FEM).

N ¼ 2000 N ¼ 3000 N ¼ 4000 N ¼ 5000 N ¼ 10000

Mode 1 2.07630 2.07604 2.07586 2.07578 2.07558

Mode 2 3.20188 3.20091 3.20028 3.20001 3.19931

Mode 3 4.32214 4.31975 4.31827 4.31759 4.31586

Mode 4 4.38978 4.38697 4.38548 4.38473 4.38304
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Fig. 17. Contours of the first eigenmode obtained by the linear LSMFS (Example 3, b ¼ 0.8 and N ¼ 60).



ARTICLE IN PRESS
C.C. Tsai et al. / Journal of Sound and Vibration 324 (2009) 1086–1110 1105
points are depicted in Figs. 4–7, where the dark circle ‘‘�’’ denotes the specified position of the normalized
boundary data. In these figures, the acoustical modes are almost the same in shape since all eigenmodes are
not degenerate. Unlike the mode shapes are sensitive to the locations of source points by utilizing the SVD, the
proposed method is really robust with respect to the spatial parameter b. Based on these numerical results, it is
convinced that the linear LSMFS is capable of determining the mode shapes of acoustical eigenmodes.
3.2. Example 2: Neumann problem with degeneracy

To demonstrate the capability of the present method for degenerate modes, we next consider the square
cavity with the Neumann boundary condition:

ðr2 þ k2
ÞuðxÞ ¼ 0; x 2 fðx; yÞj0pxp1 \ 0pyp1g

quðxÞ

qn
¼ 0; x 2 fðx; yÞjðx ¼ 0; 1 \ 0pyp1Þ [ ðy ¼ 0; 1 \ 0pxp1Þg

8<
: (12)

Similarly, the four lowest eigenvalues obtained by the direct determinant search method are stated in Tables 4
and 5 for different nodes (N) and locations of source points (b), respectively. Rapid convergent behaviors of
eigenvalues can also be observed as b and N become larger. In addition, these results are much more accurate
than those obtained by the FEM as exhibited in Table 6, where a lot of nodes are required to obtain accurate
eigenvalues. Similarly, an example plot of the direct determinant search method is depicted in Fig. 8. In these
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Fig. 18. Contours of the second eigenmode obtained by the linear LSMFS (Example 3, b ¼ 0.8 and N ¼ 60).
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numerical experiments, it is noticed that accurate eigenvalues are obtained only for bX0.15 since the
singularities are stronger for Neumann problems. Overall, it is also convinced that accurate eigenfrequencies
can be obtained robustly by using the linear LSMFS.

Furthermore, the mode shapes of acoustical eigenmodes solved by the linear LSMFS (Eq. (9)) for different
locations of source points are depicted in Figs. 9–15. For the case of nondegenerate modes (Fig. 11), the mode
shapes are almost the same in shape except the specified normalized data at the boundary locations near or on
the nodes (u ¼ 0). For the larger value of b (b ¼ 15), these failures disappear. The contours have extremely
large values since farther sources will give higher accuracy, thus small numerical differences can be
distinguished. On the other hand, for the cases of degenerate modes (Figs. 9, 12 and 14), the mode shapes vary
with respect to the positions of the specified normalized boundary data. Furthermore, the normalized
contours obtained by specifying two dual boundary data (Eq. (10)) are also demonstrated in Figs. 10, 13 and
15, which also show the insensitivity on the locations of source points. The constants (c1, c2) in Eq. (10) are
assumed to be units in Figs. 10 and 13. In order to demonstrate the influence of these constants, the results for
c1 ¼ 1 and c2 ¼ 2 are depicted in Fig. 15. Thus, it is convinced that the linear LSMFS is able to obtain mode
shapes for degenerate eigenmodes robustly.

3.3. Example 3: Dirichlet problem in a complex domain

Finally, we consider a more practical problem with Dirichlet boundary condition in the domain defined by

r ¼ ðcos 3yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� sin2 3y

p
Þ
1=3; 0pyp2p (13)
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Fig. 19. Contours of the third eigenmode obtained by the linear LSMFS (Example 3, b ¼ 0.8 and N ¼ 60).
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Fig. 20. Contours of the fourth eigenmode obtained by the linear LSMFS (Example 3, b ¼ 0.8 and N ¼ 60).
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Fig. 21. Contours of the degenerate eigenmode after normalization obtained by the linear LSMFS (Example 3, modes 2, b ¼ 0.8 and

N ¼ 60).
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Fig. 22. Contours of the degenerate eigenmode after normalization obtained by the linear LSMFS (Example 3, modes 4, b ¼ 0.8 and

N ¼ 60).
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where

x ¼ r cos y

y ¼ r sin y

This problem does not have exact solution. Formally, the four lowest eigenvalues are obtained by the direct
determinant search method (Fig. 16) as addressed, respectively, in Tables 7 and 8 for different nodes (N) and
locations of source points (b). From Tables 7 and 8, it is very easy to observe rapid convergent behaviors of
eigenvalues as b and N become larger. On the other hand, we also solve the same problem by the traditional
FEM as stated in Table 9. In Table 9, the eigenvalues obtained by the FEM converge slowly when N become
larger. Generally, the results of the linear LSMFS and FEM are in good agreement in the order of 10�3–10�4.

For the shapes of eigenmodes, we formally solve the problem by the linear LSMFS (Eq. (9)). The contours
of the four lowest eigenmodes are depicted in Figs. 17–20, respectively. Here, we typically choose b ¼ 0.8 and
N ¼ 60 based on the studies in Tables 7 and 8. The choice of these parameters is not an issue, since we have
demonstrated in the previous examples that the shapes of eigenmodes are not sensitive with respect to b and N.
For the first and third eigenmodes, they are not degenerate since the contours are almost the same in shape
when the positions of specified normalized boundary data move (denoted by ‘‘�’’). On the other hand, we can
observe that the second and fourth eigenmodes are degenerate since the shapes of eigenmodes vary as the
positions of specified normalized boundary data move. Therefore, we formally normalize the second and
fourth eigenmodes by specifying two dual boundary data (Eq. (10)), as demonstrated, respectively, in Figs. 21
and 22, in which the results will ensure the degeneracy of these two eigenmodes. Based on these numerical
results, it is convinced that the linear LSMFS is capable to determine the mode shapes of acoustical
eigenmodes with and without degeneracy even for very complex problems without exact solutions.
4. Conclusions

A numerical scheme based on the linear LSMFS was proposed to obtain the mode shapes of acoustical
eigenmodes with and without degeneracy for simple or complex domains. For nondegenerate modes, the
eigenmodes are almost the same in shape except the specified normalized data at the boundary locations near
or on the nodes (qu=qn ¼ 0 for Dirichlet problems and u ¼ 0 for Neumann problems). Moreover, the
numerical results of mode shapes are generally insensitive to locations of source points. On the other hand, for
the cases of degenerate modes, the mode shapes vary with respect to the locations of specified normalized
boundary data. Thus, the normalized contours obtained by specifying two dual boundary data are
demonstrated. Therefore, it is convinced that the linear LSMFS is a promising numerical method to obtain the
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modal contours of acoustical eigenmodes robustly and is able to distinguish degenerate modes. Following the
properties of the linear LSMFS, this method is free from meshes, singularities, as well as numerical
integrations. Moreover, the robustness and accuracy of the eigenvalues obtained with respect to different
locations of source points by the linear LSMFS in conjunction with direct determinant search method are also
revisited.
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